

Playing Surface Options for Duvall Field

Terrapin Turf Team
Amanda Bevans, James Cady,
Carolyn Coste, Kristin Jayd,
Ember Lucier, Brandon McIntyre,
Seori Stephens, Maggie Tan

Introduction

- Problem?
 - Increased field use
 - Field renovation needs

...so → **Artificial Turf** considerations.

- This comes with controversy
- For Duvall?
 - Artificial Field
 - ...or...
 - Natural Grass
 - *➤ Native* soil?
 - ➤ Modified soil?

Background

- Playing field surfaces have become a controversial topic, sparking class action suits from local governments and protests from upset constituents
- This controversy has created a difficult decision for universities, recreation centers, and other municipalities in regards to what playing surface type should be installed for field renovations and developments.
 - Controversies include
 - Worries that artificial turf will pose a threat to the health of youth players
 - Concerns about the installation and maintenance costs of artificial turf
- Considerations: player safety, construction and maintenance costs, field use, and environmental concerns

Current State of Duvall Field

- Field use (highest foot traffic in spring):
 - Boys and girls clubs
 - Community members
 - Recreational teams
 - Recess
 - 770 hrs/year used for sports; 250 hrs/year for recess
- A minimally maintained field
 - Bermudagrass
- Poor drainage properties:
 - Compaction: High
 - Clay content: 30%
 - o Hydraulic Conductivity: ⅓ in/hr

Project Goals and Research Question

- 1) To provide a comprehensive evaluation of recreational field options:
 - native-soil natural grass field,
 - a modified-soil natural grass field,
 - and synthetic infill field.
- 1) Score matrix that will guide decision making processes
- 2) Brochure to inform communities

What are the pros/cons of each field type relative to the renovation of Duvall Field?

Methodology

Literature Review:

- Databases (Google Scholar, Web of Science, Academic Search Complete)
- Field expert interviews
- Industry professionals/ trade-specific publications

Cost Analysis:

- Values gathered from interview with head of maintenance of University of Maryland, Sport Fields Manual, and Montgomery Parks Service
- Normalized to the year 2019

Matrix:

- Ranking the fields from 1-3 (best-worst) on the most salient factors considered in decision making
 - The three field types were carefully evaluated for each category, and compared against one another

Findings/Results

- History and Evolution of Natural Grass, Modified/ Engineered, and Synthetic Fields
- Player Safety
- Environmental Concerns
- Cost Comparisons

Natural Grass Field

- Traditionally, athletic fields constructed at the high school, club, and small community levels, have been natural grass because of the low initial establishment cost
- Soil on natural grass fields must be maintained with aeration in order to grow healthy grass
- Good drainage is necessary

Enhanced Drainage Mechanism

Core aeration

 Machine with hollow tines mechanically removes plugs or "cores" of soil

Sand top dressing

 Usually applied after aerating, the **sand** fills in the holes

Soil sand cap

- Small layer of topsoil is removed and replaced with sand
- Over time, this can alter the structure of the soil to allow for better drainage and a healthier grass

Source: Hudson Incorporated

Modified/Engineered Field

- Natural grass fields with modified/engineered soils: fields that are mixed with another material (sand) along with natural soil
- Coarser textured soils provided drainage of excess water
 - Promotes healthy turfgrass growth
 - Players can keep playing even after a rainstorm
- First pioneered in 1960 in the United States by the U.S. Golf Association (USGA)
- More popular systems for playing fields include the Prescription Athletic Turf (PAT) System
 - Developed in 1971
 - Substantially reduces maintenance
 - Uses an underground system of vacuums, moisture sensors and drain pipes

Artificial Field Generations 1 & 2

Generation 1

- Tightly curled nylon fiber, woven into a foam backing
- Abrasive, loosely packed tufts
 - Grass carpet over concrete

Generation 2

- Longer tufts and sand
- A shock-absorbing pad installed
- Even though strides were made, the field still could not compete with natural grass.
- The carpet pile filled with silica sand within several millimeters of the top of the fibers, allowing them to stand upright

Artificial Field Generation 3

- The grass "blades" are longer and are spaced far apart
- The fibers are made of polyethylene
 - softer and kinder to the skin
- Feature mixtures of sand and rubber granules
 - Stability
 - Ball control

Artificial Field Drainage

- Artificial turf fields are intentionally designed to maximize drainage:
 - Perforated "grassed" carpet
 - Layers of coarse rocks and geotextiles
 - Perforated pipe that directs saturation to storm drains or collectors

Risk of Joint/Bone Injury

- Artificial turf presents a unique set of injuries that do not tend to happen on natural grass
 - Turf toe
 - Various ankle injuries
 - Concussions

Contaminant Exposure

- SHIVERSITY ON 56
- Positive correlation between number of artificial turf fields and occurrence of lymphoma in youth sports players that use those fields
- Players are at risk of inhaling chemicals while playing on artificial turf fields (Mechini, 2011)
 - A high concentration of inhalable chemicals were found on fields-negligible increased risk of cancer

Direct Material Contact

- Natural grass can give players "grass rash" also known as "allergic contact dermatitis from grass"
- A survey of 20 U.S. turf field found that there were less microbes on the artificial surfaces in comparison to the natural grass fields
- Artificial turf is more prone to cause friction-based skin abrasions

Direct Material Contact from Heat

 An artificial turf surface can reach up to 170 degree F on an 80 degree F sunny day

Symptoms from heat stroke/exhaustion occur once the body reaches 104

degree F

Skin burns at this temperature as well

Parking Lot: 140 F

Synthetic Field: 157 F

Photo taken on July 6, 2010 at 4:00 pm. Temperature was 100 F

Natural fields (Bermudagrass): 94 F

Recent NIH NTP Reports

What is NIH NTP?

- National Toxicology Program (NTP)
- National Institute of Environmental Health Sciences (NIEHS)

Series of reports published in July 2019

- 5 years of research
- Overlap between Player Safety and Environmental Health

Recent NIH NTP Reports

How is this relevant to Duvall Field?

- Laboratory Studies
- systemic exposure and bioaccessibility of synthetic turf
- In vivo and in vitro

Results:

- Cytotoxicity observed in skin, lung, and intestinal cells
- No effects in vivo

Natural Grass Field Environmental Concerns:

...For both Native and Modified Soil

- Pesticide and fertilizer use:
 - Potential mobilization of pollutants and nutrients into the surrounding ecosystem
- Higher water consumption for irrigation
 - ...in comparison to artificial turf
 - Modified Soil = highest irrigation needs (more than native soil)

Artificial Field Environmental Concerns

Water:

- Conservation of water
- Reduces mobilization of pollutants
- Leaching of contaminants (if not collected and treated)

• Air:

 Volatilization of organic contaminants

• Wildlife:

- Deterrence
- Toxicity

Disposal

- Lifespan: 10 years
- Components

 are becoming
 more
 recyclable
 - Crumb rubber
 - Carpet

Source: "Removal, Recovery, Reuse and Recycling of Synthetic Turf and Its System Components." Synthetic Turf Council. January 2013.

Cost Comparison

•	Natural	Modified	Synthetic
Installation Cost (STMA) (Based on high school football field size- 57,600 sq. ft.)	Low~ \$34,560 High~ \$172,800	Low~\$158,400 High~ \$230,400	Low~ \$345,600 High~ \$590,400
Maintenance Cost (STMA) (Yearly amount based on Duvall Field's estimated 770 hours of use per year)	Low~ \$39,000 High~ \$58,800	Low~ \$50,000 High~ \$92,500	Low~ \$5,000 High~ \$8,000
Replacement Cost (MGPS) (Every 10 years)	~\$50,000	~\$80,000	~\$640,000

References:

Montgomery County Public Schools. (2011). A Review of Benefits and Issues Associated with Natural Grass and Artificial Turf Rectangular Stadium Fields

Sports Turf Managers Association. (2019). SYNTHETIC TURF OR NATURAL GRASS SPORTS FIELDS?

Field Comparison Matrix

1= Best rating

3= Worst rating

Ex:

1- lowest risk of player injury

3- highest risk

Green - Environmental Red - Player Health Blue - Practicality

Factors	Native	Modified	Synthetic
Risk of Player			
Injury	2	1	3
Direct Material			
Contact to			
Players	1	2	3
Contaminant			
Exposure to			
Players	1	2	3
Chemical			
Treatments	2	3	1
Land Disturbance	1	2	3
Wildlife Impacts	1	2	3
Disposal Methods	1	2	3
Drainage	3	2	1
Adaptability	3	2	1
Installation Costs	1	2	3
Maintenance			
Costs	3	2	1
Durability/			
Longevity	3	2	1
Lifespan	1	2	3

Summary of Advantages

Artificial Field:

- Low chemical treatments
- Maximizes field use and play (best drainage, best adaptability, and durability)
- Low maintenance costs

Native Field:

- Lowest direct material contact and contaminant exposure with players
- Lowest environmental disturbance (disposal, land disturbance, wildlife impacts)
- Lowest installation cost
- Longest lifespan

Modified/Engineered Field:

- Lowest risk of joint injury
- Overall, an Intermediary of player health, environmental concerns, practicality, and maintenance and installation costs

Final Considerations

- Duvall Field is to be used mostly by children in a recreational manner
- The playing surface chosen should:
 - Be cool enough to prevent heat related illnesses
 - Be durable enough to handle the wear/tear of children
 - Have the proper drainage mechanisms to allow for it to be played on during the rainy season
 - Non-toxic materials (in the case of accidental consumption by child athletes)
 - Be cost-effective

